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Motivation

Motivation

Ill-defined conventions when calculating quantum entropies (for example
0 ln 0 ≡ 0) work operationally but it is not easy to use them when we automate
the calculations with programming languages.
It is not easy to find analytic calculations of quantum entropies in the literature.
Why a physicist might care about quantum entropies?

Why do we even talk about more than one entropy? Different entropies can
describe extra or different phenomena than the common definitions.
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Spectral theorem

Functional Calculus

Common appearance of the spectral theorem:

f(A) =
∑
i

f (αi) |φi〉 〈φi|

matrix formation:

f(A) = M


f (α1) 0 . . . 0

0 f (α2) · · · 0
... . . . ...

0 0 · · · f (αd)

M−1

Note
The modal matrix approach of the spectral theorem holds for any
simple real-valued measurable function of a d× d Hermitian matrix.
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Quantum Theory

Quantum states and substates
Pure states are ket vectors |ψ〉 ∈ H. The density operator:

ρ =
∑
i

pi |ψi〉 〈ψi|

with Tr ρ = 1,ρ = ρ†,ρ ≥ 0.

Note
The randomness of a quantum state expressed via the density matrix has two
manifestations.

The reduced substate:

ρA = TrB

(
ρAB

)
=
∑

i

(
IA ⊗ 〈 i|B) ρAB (IA ⊗ |i〉B)

)
TrB

∑
i,j,k,l

pijkl|i〉 〈k|A⊗ | j〉 〈 l|B

 =
∑

i,j,k,l

pijkl|i〉 〈k|A Tr (|j〉 〈l|B)
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Quantum Theory

Entanglement

Definition
A mixed state of a composite system described by a density matrix ρ
acting on HA ⊗HB is separable if there exist pi ≥ 0,

{
ρi

A

}
and

{
ρi

B

}
for

which ρi
A ∈ D(HA), ρi

B ∈ D(HB) and

ρ =
∑

i

piρ
i
A ⊗ ρi

B

where
∑

i pi = 1. Otherwise the state is called entangled.

The assumption that the physical properties of the system have
definite values which exist independent of observation is sometimes
known as the assumption of realism.

The assumption that a measurement can be performed on system A
that does not influence the result of a measurement on system B is
sometimes known as the assumption of locality.
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Quantum Theory

Bell’s inequalities
Based on EPR-like states (|00〉+ |11〉)/

√
2 Bell discovered his famous inequalities.

Assuming a probability distribution of predictive properties P consistent with local
realism we are forced to find E(P) ≤ 2. However projective measurements lead to
E(P) = 2

√
2. Violation of these inequalities is though of as a sufficient criterion for

entanglement.

Remark
Negative conditional entropy is necessary condition for entanglement.
Positive conditional entropy is a necessary condition for separability.
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von Neumann entropy

Basic theory and concepts

Definition
(Von Neumann entropy)The von Neumann entropy of a quantum state ρ is
defined as:

S(ρ) ≡ −Tr(ρ log ρ).

Definition
(Heuristic von Neumann entropy)For a density matrix ρ ∈ D(H) the heuristic
form of the von Neumann entropy is defined as:

S(ρ) = −Tr(F (ρ))

in which F is the function F : [0, 1]→ R:

F (x) = lim
ε→x

(ε log ε)

For non-symbolic programming:

F (x) =
{

0 x = 0
x log x x > 0
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von Neumann entropy

Example-1
A statistical mixture of N orthogonal(mutually exclusive) pure states.

ρ =
N−1∑
i=0

ρi |i〉 〈i| = diag(ρ0, ρ1, .., ρN−2, ρN−1)

S(ρ) = −Tr
[

diag
(
F (ρ0), F (ρ1), .., F (ρN−2), F (ρN−1)

)]
= −

N−1∑
i=0

ρi log ρi

For a fixed temperature gas at a T = 1/kBβ in a canonical ensemble model has a
density operator:

ρCE =
exp(−βĤ)

Z

with β being a free parameter, Ĥ and εn denotes the Hamiltonian and its eigenvalues
and Z the quantum partition function:

Z = Tr
(

e−βĤ
)

=
∑
i

e−βεi

based on the condition Tr(ρ) = 1. Thus:

ρi = e−βεi/Z
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von Neumann entropy

Conditional von Neumann entropy

Note
Definitions of classical probability theory can not be trivially used
for non-commutative algebras.

Definition
(Conditional von Neumann Entropy)The quantum analog of the
conditional entropy is defined as:

S(A | B) = S(AB)− S(B)

Where S(AB) = S(ρAB) and S(B) = S
(
TrA ρAB

)
.
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von Neumann entropy

Example-II

|ψ(θ)〉 = cos θ|00〉+ sin θ|11〉, 0 < θ < π/2

Its density matrix:

σAB(θ) =

 cos2 θ 0 0 cos θ sin θ
0 0 0 0
0 0 0 0

cos θ sin θ 0 0 sin2 θ


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von Neumann entropy

Example-II

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 0,

v1 =

 cot θ
0
0
1

 , v2 =

 − tan θ
0
0
1

 , v3 =

 0
0
1
0

 , v4 =

 0
1
0
0


Hence the modal matrix is:

M =

 cot θ − tan θ 0 0
0 0 0 1
0 0 1 0
1 1 0 0


which gives:

det(M) = −(cos θ sin θ)−1.

As a result:

M−1 =

 cos θ sin θ 0 0 sin2 θ
− cos θ sin θ 0 0 cos2 θ

0 0 1 0
0 1 0 0


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von Neumann entropy

Example-II
So we have decomposed ρ as:

σAB = MDM−1

in which D = diag(λ1, λ2, λ3, λ4).

S(σAB) = −Tr(F (σAB))

= −Tr(F (MDM−1))

= −Tr
[
M

 F (1) 0 0 0
0 F (0) 0 0
0 0 F (0) 0
0 0 0 F (0)

M−1
]

= 0.

The result is expected since σAB is a pure state.

Remark
It can be generally proven that pure states have zero von Neumann entropy, using
ρ = ρ2.
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von Neumann entropy

Example-II

Let’s trace out the second qubit using braket notation and the linearity of the partial
trace operator:

σA = TrB(σAB)

= TrB
(

cos2 θ |00〉 〈00|+ cos θ sin θ |00〉 〈11|+ cos θ sin θ |11〉 〈00|+ sin2 θ |11〉 〈11|
)

= TrB
(

cos2 θ |0〉 〈0| ⊗ |0〉 〈0|+ cos θ sin θ |0〉 〈1| ⊗ |0〉 〈1|

+ cos θ sin θ |1〉 〈0| ⊗ |1〉 〈0|+ sin2 θ |1〉 〈1| ⊗ |1〉 〈1|
)

= cos2 θ |0〉 〈0|Tr(|0〉 〈0|) + cos θ sin θ |0〉 〈1|Tr(|0〉 〈1|)

+ cos θ sin θ |1〉 〈0|Tr(|1〉 〈0|) + sin2 θ |1〉 〈1|Tr(|1〉 〈1|)

= cos2 θ |0〉 〈0|+ sin2 θ |1〉 〈1|

=
(

cos2 θ 0
0 sin2 θ

)
.
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von Neumann entropy

Example-II

We see that the reduced density operator is diagonal. Hence, we don’t need to
decompose the matrix further. Let’s calculate:

S(B | A)σ = S(σAB)− S(σA)

= 0− S(σA)

= −S(σA)

= Tr[F (σA)]

= Tr
[(

F (cos2 θ) 0
0 F (sin2 θ)

)]
= 2 sin2 θ log(sin θ) + 2 cos2 θ log(cos θ)
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von Neumann entropy

Example-II
This result demonstrates the general property of the quantum conditional entropy that
pure entangled states have negative values. It is actually easy to see from the
following plot that at the limits of θ → 0 and θ → π/2 the measure goes to 0.

We can easily see that the minimum is close to − log 2. This is not an accident since
is common among the so called maximally entangled states. In particular, θ = π/4 will
give the maximal entanglement.
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von Neumann entropy

Example-III(Werner states)

W [dn](s) = (1− s)
1
dn
I + s|Ψ〉〈Ψ|

where s is a free parameter, d is the dimension of the qudits, n is the number of
qudits, |Ψ〉 is an entangled state and I is the identity matrix for the composed Hilbert
space. It is proven that the state W [dn](s) is fully separable if and only if
s ≤
(
1 + dn−1

)−1. We take the simplest case of d = 2, n = 2 and
|Ψ〉 = (|00〉+ |11〉)/

√
2 as prescribed.
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von Neumann entropy

Example-III(Werner states)

This state is separable iff s ≤ 1/3:

W =

 (1 + s)/4 0 0 s/2
0 (1− s)/4 0 0
0 0 (1− s)/4 0
s/2 0 0 (1 + s)/4


With

WA =
(

1/2 0
0 1/2

)
S(B|A)W = S(AB)− S(A)

= S(W )− S(WA)

=
3
4

(s− 1) log
(1− s

4

)
−

1
4

(3s+ 1) log
(1

4
(3s+ 1)

)
− log(2)
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von Neumann entropy

The blue point B has the coordinates (1/3, 0.549306) and the red point
R(0.747614, 0) which was found via numerical methods. The diagram clearly
illustrates that the state W while entangled(s ≥ 1/3) has positive quantum
conditional entropy, a fact emphasized by many sources. This particular example
becomes negative for s & 0.747614.
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Other entropies

Renyi entropy

Definition

(Heuristic quantum Renyi entropy)For a density matrix ρ ∈ D(H) the heuristic form of
the quantum Renyi entropy is defined as:

R(α; ρ) =
1

1− α
log Tr (r(α; ρ)) , α ∈ (0, 1) ∪ (1,∞)

in which r is the function r : [0, 1]→ R+: r(α;x) = xα.

Remark

It is proven that: limα→1 R(α; ρ) = S(ρ). For α→ 0 and α→∞ the Renyi entropy
converges to the Hartley entropy and the Min entropy respectively.

Definition

(Quantum Conditional Renyi Entropy)The conditional form of the quantum Renyi
entropy, for a density matrix ρ ∈ D(H) is defined as:

R(α;A | B) = R(α; ρAB)−R(α; ρB)
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Other entropies

Tsallis entropy

Definition

(Heuristic quantum Tsallis entropy)For a density matrix ρ ∈ D(H) the heuristic form
of the quantum Tsallis entropy is defined as:

T (q; ρ) =
1

1− q
(Tr [t(q; ρ)]− 1) , q ∈ (0, 1) ∪ (1,∞)

in which t is the function t : [0, 1]→ R+: t(q;x) = xq .

Remark

It can be proved that: S(ρ) = limq→1 T (q; ρ). For q → 0 and q →∞ the Tsallis
entropy converges to rank(ρ)− 1 and 0 respectively.

Definition

(Quantum Conditional Tsallis Entropy)The conditional form of the quantum Tsallis
entropy,for a density matrix ρ ∈ D(H) is defined as:

T (q;A | B) =
T (q; ρAB)− T (q; ρB)
1 + (1− q)T (q; ρB)



Intro Quantum entropies Conclusions

Other entropies

Example-IV (ρ(s) = s |0〉 〈0|+ (1− s) |1〉 〈1|)

R(α; ρ(s)) = log [sα + (1− s)α] /(1− α)

for s = 0.5 Renyi entropy takes the value log 2 independent of α.
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Other entropies

Example-IV (ρ(s) = s |0〉 〈0|+ (1− s) |1〉 〈1|)

T (q; ρ(s)) = [sq + (1− s)q − 1] /(1− q)

for s = 0.5 Tsallis entropy is not independent of q.
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Other entropies

Example-V(Maximally mixed in N dimensions)

For

ρ =
N−1∑
i=0

ρi |i〉 〈i| = diag(ρ0, ρ1, .., ρN−2, ρN−1) = IN/N

von Neumann, Renyi case:

S(ρ) = R(α; ρ) = logN (1)

Tsallis case:
T (q; ρ) = 1−N1−q

q − 1 (2)
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Other entropies

Example-III(Werner states)

R(B|A)W =
log
(
21−α

)
− log

(
4−α (3(1− s)α + (3s+ 1)α)

)
α− 1

As an example, blue point B has the coordinates (0, 0.978043) and the red point
R(1/3, 0.65241) which was found via numerical methods.
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Other entropies

Example-III(Werner states)

T (B|A)W =
2−q−1

(
−3(1− s)q − (3s+ 1)q + 2q+1

)
q − 1

Blue point B(0, 0.978043) and the red point R(1/3, 0.826907).
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Quantum Relative entropy

Theory
Definition

(Quantum Relative Entropy) The quantum relative entropy D(ρ‖σ) between density operators ρ ∈ D(H) and
σ ∈ L(H) is defined by:

D(ρ‖σ) =
{

Tr[ρ log ρ]− Tr[ρ logσ] supp(ρ) ⊆ supp(σ)
∞ otherwise

Note

The quantum relative entropy is 0 iff ρ = σ.

Definition

(Heuristic Quantum Relative Entropy)The heuristic quantum relative entropy Q(ρ‖σ) between the d× d density
matrices ρ and σ is defined by:

Q(ρ‖σ) = S(ρ)− lim
ε→−∞

(
Tr[ρG(ε;σ)]

)
in which G : [0, 1]→ R as:

G(ε; x) =
{

ln x x ∈ (0, 1]
ε x = 0

ε is a free parameter with ε ∈ R.
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Quantum Relative entropy

Example-VI(σu = |ψ(u)〉 〈ψ(u)| vs σv = |ψ(v)〉 〈ψ(v)|)

Q(σu‖σv) =

S(σu)− lim
ε→−∞

Tr

σuMv

 G(ε; 1) 0 0 0
0 G(ε; 0) 0 0
0 0 G(ε; 0) 0
0 0 0 G(ε; 0)

M−1
v


= − lim

ε→−∞

Tr

σu
 ε sin2(v) 0 0 −ε cos(v) sin(v)

0 ε 0 0
0 0 ε 0

−ε cos(v) sin(v) 0 0 ε cos2(v)


= − lim

ε→−∞

(
ε sin2(v − u)

)
=
{

+∞ u 6= v

0 u = v

This result is expected. Different pure states diverge while the quantum relative
entropy is zero if the matrix arguments are identical.



Intro Quantum entropies Conclusions

Quantum Relative entropy

Example-VII(σ(θ) vs W)

Q(σ‖W ) =
1
2

(
log
( 16
−3s2 + 2s+ 1

)
+ sin(2θ) log

( 1− s
3s+ 1

))

As we can see this measure of departure can detect the maximum entanglement of
state σ(θ). We can easily check that Q(W‖σ) diverges.
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Conclusions

It is tempting to conjecture that if there can be designed an experiment that
measures Q(σ‖W ) directly, we can detect and quantify the entanglement of the
pure state σ(θ).
It is proven for the quantum relative entropy that:

D(ρ‖σ) = lim
ε→0+

D(ρ‖σ + εI)

using a different function G(ε;x) = x+ ε. Since different functions can be used
to heuristically determine the quantum relative entropy, questions are raised
regarding the class of functions G(ε;x).
Figures in slide 16,29 examples II,VI,VII do not exist in the current literature.
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